Unsupervised Local Feature Hashing for Image Similarity Search
نویسندگان
چکیده
منابع مشابه
Parametric Local Multimodal Hashing for Cross-View Similarity Search
Recent years have witnessed the growing popularity of hashing for efficient large-scale similarity search. It has been shown that the hashing quality could be boosted by hash function learning (HFL). In this paper, we study HFL in the context of multimodal data for cross-view similarity search. We present a novel multimodal HFL method, called Parametric Local Multimodal Hashing (PLMH), which le...
متن کاملHashing for Similarity Search: A Survey
Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied since...
متن کاملRanking Preserving Hashing for Fast Similarity Search
Hashing method becomes popular for large scale similarity search due to its storage and computational efficiency. Many machine learning techniques, ranging from unsupervised to supervised, have been proposed to design compact hashing codes. Most of the existing hashing methods generate binary codes to efficiently find similar data examples to a query. However, the ranking accuracy among the ret...
متن کاملUnsupervised Feature Learning for low-level Local Image Descriptors
Unsupervised feature learning has shown impressive results for a wide range of input modalities, in particular for object classification tasks in computer vision. Using a large amount of unlabeled data, unsupervised feature learning methods are utilized to construct high-level representations that are discriminative enough for subsequently trained supervised classification algorithms. However, ...
متن کاملUnsupervised Feature Selection Using Feature Similarity
ÐIn this article, we describe an unsupervised feature selection algorithm suitable for data sets, large in both dimension and size. The method is based on measuring similarity between features whereby redundancy therein is removed. This does not need any search and, therefore, is fast. A new feature similarity measure, called maximum information compression index, is introduced. The algorithm i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Cybernetics
سال: 2016
ISSN: 2168-2267,2168-2275
DOI: 10.1109/tcyb.2015.2480966